If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-10x-200=0
a = 2; b = -10; c = -200;
Δ = b2-4ac
Δ = -102-4·2·(-200)
Δ = 1700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1700}=\sqrt{100*17}=\sqrt{100}*\sqrt{17}=10\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{17}}{2*2}=\frac{10-10\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{17}}{2*2}=\frac{10+10\sqrt{17}}{4} $
| 16+x=18 | | s-6+29=7 | | 6x-20=4x-30 | | -14=2/5m-6 | | 5x+2(-4x+15)=6 | | 4x-11+-19x=-4x-15 | | 5n+3+3n=30 | | x-10=-2x+100 | | -34=6-4x | | 4x-11+7x=-4x-15 | | √10-x+5=7 | | 7t+15-2t=25t= | | 3x^2-7x=x^2+9 | | y9=0.01 | | 7-4y=-48 | | x-(0.33*x)=30 | | 8+6y=2(3y+4) | | 10^x+x=2 | | (140+24x)=5x | | 3x2−7x=x2+93x2−7x=x2+9 | | y/16=31 | | 10^2+x=-2 | | 5(1+3n)=3(5n-2) | | t/2.5=4.3 | | -8b-9=-2b+3 | | x-2=147 | | 16^(2p-3)*4^(-2p)=2^4 | | 4x+7(2x-10)=38 | | 9d+8=5d-6+2d | | -9n+14n+9=6n-12 | | 6x-10-3x=35 | | (4x+3)^2=10 |